Source code for layers.gcn

# modified from https://github.com/tkipf/pygcn/blob/master/pygcn/layers.py

import math

import torch
import torch.nn as nn

from torch.nn.parameter import Parameter


[docs]class GraphConvolution(nn.Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() self.bn = nn.BatchNorm1d(out_features)
[docs] def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv)
[docs] def forward(self, x, adj): support = torch.bmm(adj, x) result = torch.mm(support.view(-1, self.in_features), self.weight) output = result.view(-1, adj.data.shape[1], self.out_features) if self.bias is not None: output = output + self.bias output = output.transpose(1, 2).contiguous() output = self.bn(output) output = output.transpose(1, 2) return output
def __repr__(self): return self.__class__.__name__ + ' (' \ + str(self.in_features) + ' -> ' \ + str(self.out_features) + ')'